
1) Adote o perfil C10"×22,77 kg/m para calcular o peso próprio total da treliça, **P** (em kg, desconsidere o peso das ligações), o índice de esbeltez da barra mais esbelta, λ , e o esforço normal resistente de tração de projeto, $N_{t,Rd}$, desse perfil. Considere L=7,80 m. Considere, também, Aço de f_y =25,0 kN/cm². γ_{a1} =1,10. Para o carregamento indicado, calcule o esforço normal da barra 1, S_{d1} (em kN). Adote F_g =(P×9,81) (em N).

Solução

BITOLA	d	tw	bf	tf	area	lx	Wx	rx	ly	Wy	ry	х	lt	Cw
mm x kg/m	mm	mm	mm	mm	cm²	cm ⁴	cm³	cm	cm ⁴	cm³	cm	cm	cm ⁴	cm ⁶
C6"×12,2	152,4	5,08	48,77	8,71	15,5	546	71,7	5,94	28,8	8,16	1,36	1,3	3,06	1260
C6"×15,6	152,4	7,98	51,66	8,71	19,9	632	82,9	5,63	36	9,24	1,34	1,27	5,33	1590
C8"×17,1	203,2	5,59	57,4	9,5	21,68	1344,3	132,7	7,87	54,1	12,94	1,42	1,47	5,41	4430
C8"×20,5	203,2	7,7	59,51	9,5	25,93	1490	147,5	7,59	62,4	14,09	1,42	1,42	7,74	5160
C10"×22,77	254	6,1	66,04	11,1	29	2800	221	9,84	95	19	1,81	1,61	8,7	12200
C10"×29,76	254	9,63	69,57	11,1	37,9	3290	259	9,31	117	21,6	1,76	1,54	15,3	15300

$$sen(\alpha) = 0.768$$

$$\cos(\alpha) = 0.640$$

→ Comprimento da Barra 1

$$L_1 = 2,600 \text{ m}$$

→ Comprimento da Barra 6

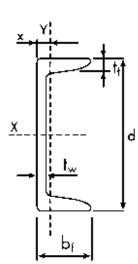
$$L_6 = 2,031 \text{ m}$$

→ Comprimento total

$$L_T = 5 \times 2,600 + 6 \times 2,031 = 25,18 \text{ m}$$

→ Peso próprio total:

$$P_T = 25,18 \text{ m} \times 22,77 \frac{\text{kg}}{\text{m}} = 573,4 \text{ kg}$$

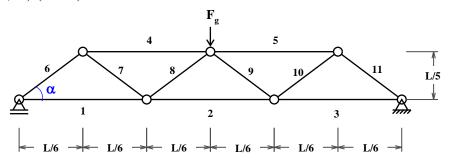

 $\rightarrow F_g$:

$$F_g = 573.4 \times 9.81 = 5625.4 \text{ N}$$

→ Esforços normais: barra 6 e barra 1, S_{d1}:

$$S_{d6} = -\frac{0.5F_g}{sen(\alpha)} = -3.66 \text{ kN}$$

$$S_{d1} = -S_{d6} \cos(\alpha) = 2.34 \text{ kN}$$


→ Índice de esbeltez:

$$\lambda = \frac{L_1}{r_y} = \frac{2,60 \text{ m}}{1,81 \text{ cm}} = 144$$

→ Esforço normal resistente de tração de projeto:

$$N_{t,Rd} = \frac{A_g f_y}{\gamma_{a1}} = \frac{29,00 \text{ cm}^2 \times 25,0 \frac{kN}{cm^2}}{1,10} = 659,1 \text{ kN}$$

2) Adote o perfil C6"×12,2 kg/m para calcular o peso próprio total da treliça, **P** (em kg, desconsidere o peso das ligações), o índice de esbeltez da barra mais esbelta, λ , e o esforço normal resistente de tração de projeto, **N**_{t,Rd}, desse perfil. Considere L=6,90 m. Considere, também, Aço de f_y=25,0 kN/cm². γ_{a1} =1,10. Para o carregamento indicado, calcule o esforço normal da barra 1, **S**_{d1} (em kN). Adote F_g=(P×9,81) (em N).

Solução

	BITOLA	d	tw	bf	tf	area	lx	Wx	rx	ly	Wy	ry	х	lt	Cw
	mm x kg/m	mm	mm	mm	mm	cm ²	cm ⁴	cm³	cm	cm ⁴	cm³	cm	cm	cm ⁴	cm ⁶
ĺ	C6"×12,2	152,4	5,08	48,77	8,71	15,5	546	71,7	5,94	28,8	8,16	1,36	1,3	3,06	1260

→ Peso próprio total:

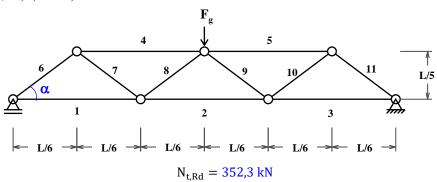
 $P_{\rm T} = 271.8 \text{ kg}$

 $\rightarrow F_g$:

 $F_g = 2666,3 \text{ N}$

 \rightarrow Esforços normal da barra 1, S_{d1} :

 $S_{d1} = 1,11 \text{ kN}$


→ Índice de esbeltez:

 $\lambda = 169$

→ Esforço normal resistente de tração de projeto:

 $N_{t,Rd} = 352,3 \text{ kN}$

3) Adote o perfil C6"×12,2 kg/m para calcular o peso próprio total da treliça, **P** (em kg, desconsidere o peso das ligações), o índice de esbeltez da barra mais esbelta, λ , e o esforço normal resistente de tração de projeto, **N**_{t,Rd}, desse perfil. Considere L=6,00 m. Considere, também, Aço de f_y=25,0 kN/cm². γ_{a1} =1,10. Para o carregamento indicado, calcule o esforço normal da barra 1, **S**_{d1} (em kN). Adote F_g=(P×9,81) (em N).

