

1.36. A luminária de 50 lbf é suportada por duas hastes de aço acopladas por um anel em A. Determinar qual das hastes está sujeita à maior tensão normal média e calcular seu valor. Suponha que $\theta = 60^{\circ}$. O diâmetro de cada haste é dado na figura. σ_{max} =344,6 psi

- **1.37.** Resolver o problema 1.36 para . $\theta = 45^{\circ}$. $\sigma_{\text{max}} = 357$ psi
- **1.38.** A luminária de 50 lbf é suportada por duas hastes de aço acopladas por um anel em A. Determinar o ângulo da orientação de θ de AC, de forma que a tensão normal média na haste AC seja o dobro da tensão normal média da haste AB. Qual é a intensidade dessa tensão em cada haste? O diâmetro de cada haste é indicado na figura. θ =47,4° F_{AB} =34,66 lb F_{AC} =44,37 lb
- **1.60.** As barras da treliça têm uma área da seção transversal de $1,25 \text{ pol}^2$. Determinar a tensão normal média em cada elemento devido à carga P = 8 kip. Indicar se a tensão é de tração ou de compressão.

1.61. As barras da treliça têm uma área da seção transversal de 1,25 pol². Supondo que a tensão normal média máxima em cada barra não exceda 20 ksi, determinar a grandeza máxima P das cargas aplicadas à treliça. P = 6,82 kip