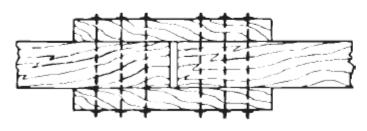
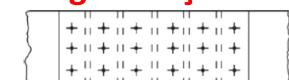
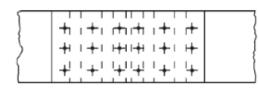

Tração centrada e tração excêntrica



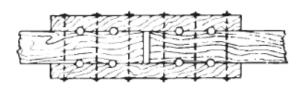
Talas de madeira

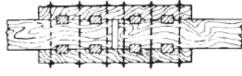
Talas metálicas



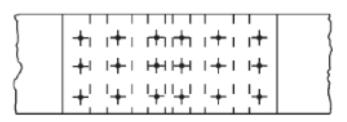


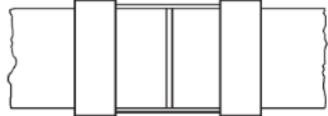
Talas de madeira

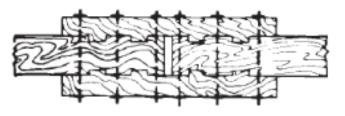

Apertadas com parafusos


+ tarugo de aço

Talas de madeira Apertadas com parafusos

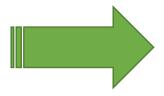




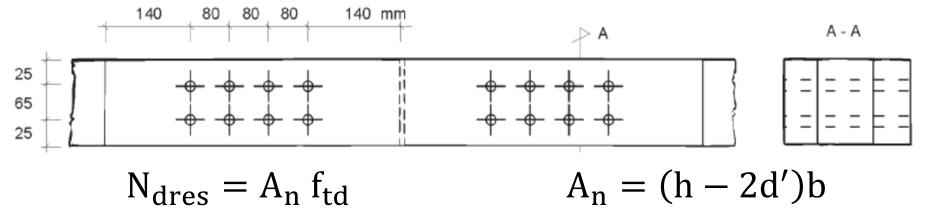

+ tarugos de madeira

Talas de madeira com entalhe

Entalhes com calço de aço


CRITÉRIO DE CÁLCULO

 $\sigma_{\rm d} = rac{N_{
m d}}{A_{
m n}} \le f_{
m td}$


tensão solicitante de projeto

área da seção líquida esforço normal de tração de projeto

> tensão resistente de projeto paralela às fibras

Duas peças tracionadas (115 mm \times 50 mm) de Branquilho de 2ª categoria usado em ambiente de classe 2 de umidade, estão ligadas por parafusos de d=18 mm (d'=19 mm) à duas talas laterais metálicas. Considere carga de longa duração. Calcular o esforço normal resistente de tração paralela às fibras de projeto, N_{dres} .

$$f_{td} = k_{mod} \frac{f_{tk}}{\gamma_w}$$

Valores de kmod,1

	Tipos de madeira		
Classes de carregamento	Madeira serrada Madeira laminada colada Madeira compensada	Madeira recomposta	
Permanente	0,60	0,30	
Longa duração	0,70	0,45	
Média duração	0,80	0,65	
Curta duração	0,90	0,90	
Instantânea	1,10	1,10	

Valores de kmod,2

Classes de umidade	Madeira serrada Madeira laminada colada Madeira compensada	Madeira recomposta	
(1) e (2)	1,0	1,0	
(3) e (4)	0,8	0,9	

Valores de kmod,3

O coeficiente parcial de modificação $k_{mod,3}$ leva em conta se a madeira é de $1\underline{a}$ ou $2\underline{a}$ categoria. No caso de madeira de $2\underline{a}$ categoria admite-se $k_{mod,3} = 0.8$ e no de $1\underline{a}$ categoria $k_{mod,3} = 1.0$.

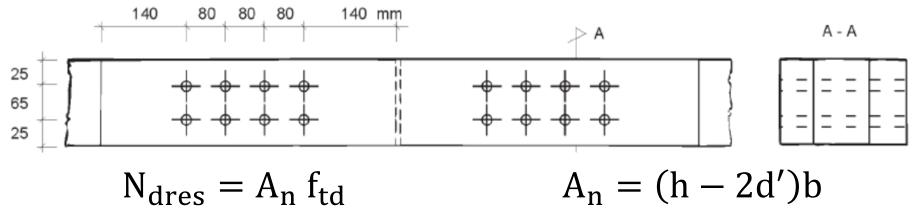
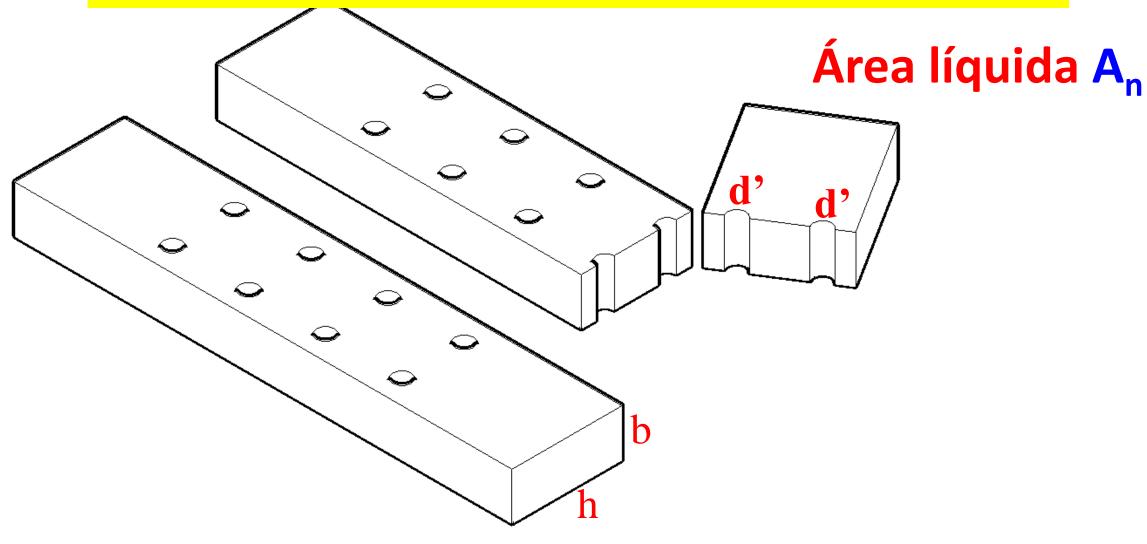
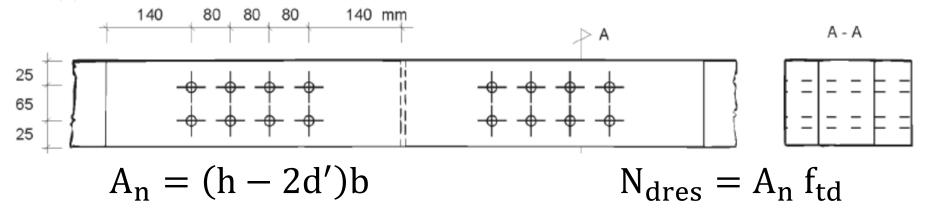

O coeficiente parcial de modificação $k_{mod,3}$ para coníferas na forma de peças estruturais maciças de madeira serrada sempre deve ser tomado com o valor $k_{mod,3} = 0.8$, a fim de se levar em conta o risco da presença de nós de madeira não detectáveis pela inspeção visual.

Tabela 3.8 – Relação f_k/f_m entre as resistências características a média e o valor do coeficiente γ_w


Esforço	f _k /f _m	$\gamma_{\sf w}$	
compressão paralela às fibras	0,70	1,4	
tração paralela às fibras	0,70	1,8	
cisalhamento paralelo às fibras	0,54	1,8	-

Branquilho
$$\rightarrow$$
 f_{tm}=87,9 MPa

Duas peças tracionadas (115 mm \times 50 mm) de **Branquilho** de 2ª categoria usado em ambiente de classe 2 de umidade, estão ligadas por parafusos de d=18 mm (d'=19 mm) à duas talas laterais metálicas. Considere carga de longa duração. Calcular o esforço normal resistente de tração paralela às fibras de projeto, N_{dres} .



$$f_{td} = k_{mod} \frac{f_{tk}}{\gamma_w} = 0.70 \times 1.0 \times 0.80 \times \frac{0.70 \times 87.9}{1.8} = 19.142 \text{ MPa}$$

$$A_n = (h - 2d')b$$

 $A_n = (11,5 - 2 \times 1,9) \times 5,0 = 38,5 \text{ cm}^2$

Duas peças tracionadas (115 mm \times 50 mm) de Branquilho de 2ª categoria usado em ambiente de classe 2 de umidade, estão ligadas por parafusos de d=18 mm (d'=19 mm) à duas talas laterais metálicas. Considere carga de longa duração. Calcular o esforço normal resistente de tração paralela às fibras de projeto, N_{dres} .

$$f_{td} = k_{mod} \frac{f_{tk}}{\gamma_w} = 0.70 \times 1.0 \times 0.80 \times \frac{0.70 \times 87.9}{1.8} = 1.9142 \frac{kN}{cm^2}$$

$$A_n = (h - 2d')b = (11.5 - 2 \times 1.9) \times 5.0 = 38.5 \text{ cm}^2$$

$$N_{dres} = A_n f_{td} = 38.5 \times 1.9142 = 73.6 kN$$

www.profwillian.com Obrigado!